Ihre Hauptaufgaben:
- Verbesserung der Auto-Tester Tool-Funktionalität: Verfeinerung der Workflow-Automatisierung und Verbesserung der Genauigkeit der Fehlerreproduktion durch datengestützte Erkenntnisse.
- Optimierung von System-Logging & Daten-Telemetrie: Verbesserung der Protokollerfassung, -struktur und Echtzeitüberwachung für eine bessere Transparenz des Systemverhaltens.
- Ermöglichung vollständiger Log-Wiedergabe: Entwicklung von Funktionen zur Wiedergabe ganzer Workflows aus Logdateien für eine umfassende Fehleranalyse.
- Optimierung der Benutzerinteraktion & Usability: Gestaltung intuitiver Benutzeroberflächen für Log-Filterung, Testausführung und Ergebnisanalysen zur Rationalisierung des Debuggings.
- Datenanalyse & Visualisierung: Gewinnung von Erkenntnissen aus Logdaten und Erstellung von Dashboards mithilfe von Tools wie Python, Tableau oder Power BI.
- Workflow-Automatisierung: Automatisierung von Datenverarbeitung, Logging und Reporting zur Steigerung von Effizienz und Genauigkeit.
- Zusammenarbeit: Enge Zusammenarbeit mit Ingenieuren, Testern und Produktteams, um Datenerkenntnisse mit technischen Verbesserungen abzustimmen.
- Dokumentation & Berichterstattung: Pflege einer klaren Dokumentation von Prozessen, Ergebnissen und Verbesserungsvorschlägen.
|
RESPONSIBILITIES
- Minimum of 3 years experience, with sales data experience (using Nielsen/Circana or equivalent) and especially in the field of retail /consumer goods data. Managing or working with external agencies is a plus
- University Masters degree, in fields such as Business Studies, Marketing, Mathematics, Economics, Statistics, etc.
- Fluent in english
- Some experience in using commercial statistical software packages is a plus, e.g. R, Python etc.
- Analytical mindset supported with strong communication skills, a team-oriented mindset and the ability to engage with stakeholders at various levels
- Good understanding of marketing principles, as well as Consumer/Shopping behaviour
|
Die Rolle
- Aufbau von vertrauensvollen Beziehungen zu den Marketing-Teams und Unterstützung in allen finanziellen Angelegenheiten.
- Sparringspartner für Budgets, Forecasts und Ausgabenentscheidungen.
- Hinterfragen von Annahmen, Unterstützung von Entscheidungsfindungen und Förderung von Kostenbewusstsein.
- Lieferung von Ad-hoc-Analysen und Business-Insights, um Projekte mit hoher Wirkung zu unterstützen.
|
RESPONSIBILITIES
- Minimum of 3 years of professional experience as an Operations or Logistics Controller
- Degree in Business Administration with a focus on Finance/Controlling/Logistics/Supply Chain Management
- Excellent knowledge in English
- Experience in the area of cost-type and cost-unit controlling
- Excellent analytical, communication, problem solving and stakeholder management skills
- Experience with SAP ERP (FI/CO, SD), SAP TM, SAP BI, and Oracle Hyperion is beneficial
- Good command of advanced analytics and data visualization tools (Python, R, PowerBI, Tableau) is a plus
- Analytics mindset, Future vision focus, and passion for working with numbers
- Accuracy, reliability, flexibility, and result orientation
- Proactive, self-motivated, self-reliant and able to work under pressure in a fast-paced team environment
|
RESPONSIBILITIES
- 4+ years of experience in Data Science. Previous experience working as a Machine Learning Expert is a plus
- Masters or Doctorate in relevant field, for instance: Mathematics, Statistics, Science (including data, behavioural, social, econ, ...)
- Good command of English, both spoken and written. German a plus
- Programming: know at least one of R, Python, SQL with the ability and willingness to learn the other two
- Data Literacy: ability to prepare datasets ensuring top quality such that essence of said data and the implications for the problem at hand can be grasped quickly
- Statistical Reasoning: theoretical and applied understanding of Stats, Probability and ML Algorithms and know how to use these tools to reduce uncertainty in a business context (regression, visualization)
- Technical Literacy: applied understanding of modern computing allows the candidate to do things which go beyond the strict definition of Data Science (git, API calls, web crawling, …)
- Presentation Skills: present coherent data stories at the appropriate level of abstraction given the audience
- Stakeholder Management: skilled at building mutually beneficial connections with functional stakeholders
- Pragmatic Critical Thinking: intuitively consider relevant costs/benefits in all decisions and act accordingly
- Outcome Driven: highly motivated to add value and to demonstrate that impact to the organization
- Scientific Reasoning/ Scoping: ability to define and formulate new questions, in addition to answering given ones
- Grit: proven capability to see things through to the end even if initial feedback is discouraging
|
RESPONSIBILITIES
- Experience in user research and talking to stakeholders to bridge the gap between the problem of a user and actual AI implementation options
- Proven experience in developing AI-powered solutions, from research to production-ready implementation.
- Strong foundation in modern AI/ML frameworks, patterns and tooling, especially in Generative AI, covering concepts like prompt engineering, RAG, LLM as a judge, fine-tuning, and so on.
- Familiarity with cloud platforms (preferrable AWS) and LLMOps & MLOps pipelines for deploying and scaling AI solutions.
- Expertise in model optimization and evaluation techniques to build robust AI workflows.
- Solid skills in Python (or other relevant languages) and practical experience in applying modern software engineering patterns (like version control systems, merge requests, pair-/mob-programming, testing)
- Strong interest and basic knowledge about Agentic AI and agentic architectures
- Strong communication skills, able to explain technical solutions to non-technical audiences.
- Excellent problem-solving and analytical skills, with a proactive approach to challenges.
- Ability to work collaboratively with cross-functional teams.
- Ability to move fast in an environment where things are sometimes loosely defined and may have competing priorities or deadlines
- Enjoy owning the problems end-to-end, and are willing to pick up whatever knowledge you're missing to get the job done
- Affinity for media and broadcast domain is a plus
|